

Инновационные учебные макеты промышленного оборудования, созданные методом 3D-печати для инженерного образования и корпоративного обучения.

Проблема

- Обучение в вузах, колледжах и корпоративных центрах ТЭК остаётся теоретическим.
- Металлические учебные макеты тяжёлые, дорогие, неразборные.
- Оснащение и обновление аудиторий — дорого и долго.
- Оснащение идет не по запросу, а по принципу "поставили, что нашли".

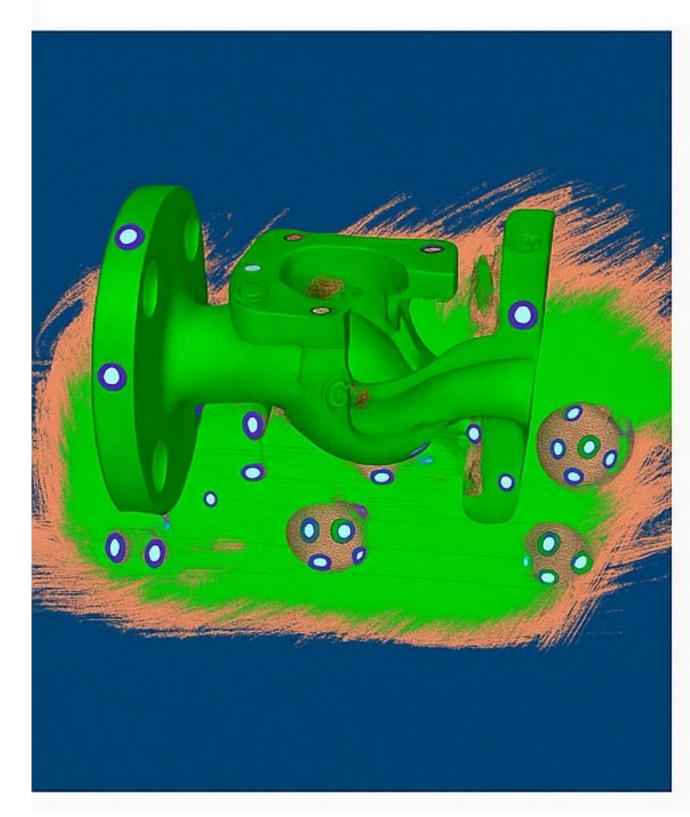
Материал: Металл; Вес: 130 кг

Решение

Сборно-разборные макеты промышленного оборудования, напечатанные на 3D-принтере

- ✓ Линейка уже готовых и адаптированных макетов
- Уникальные макеты, оригиналов которых нет в продаже
- ✔ Лёгкие и безопасные, полностью повторяют внутреннее устройство и функционал
- ✓ Полностью сборно-разборные, подходят для обучения и демонстрации
- ✓ Быстрое производство

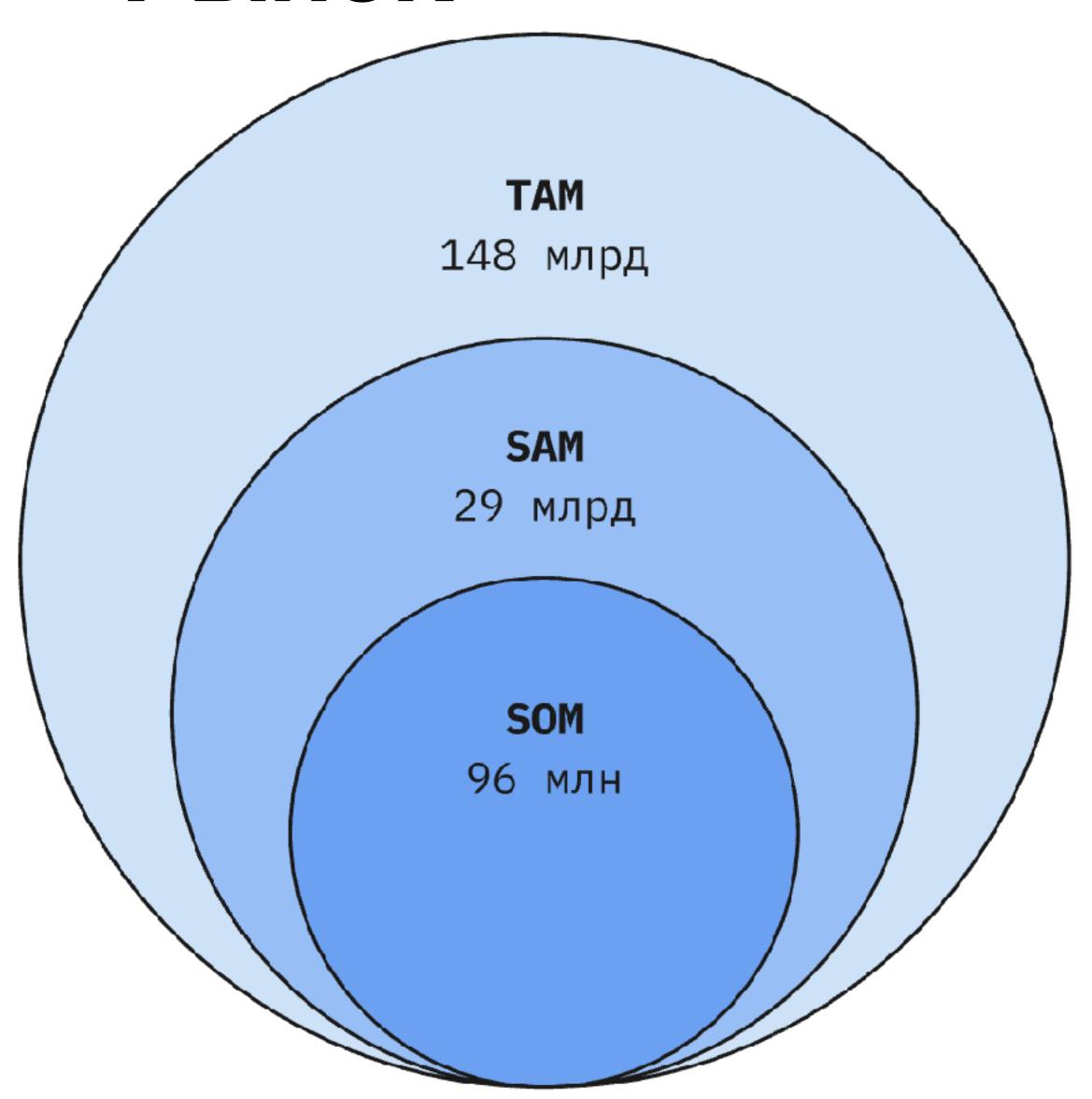
Материал: пластик; Вес: 1 кг Аналог из металла весит 6 кг


Технология

С помощью 3д сканирования, реверс-инжиниринга и 3д моделирования создается копия объекта 1 к 1, для последующей адаптации к 3д печати

3Д Сканирование

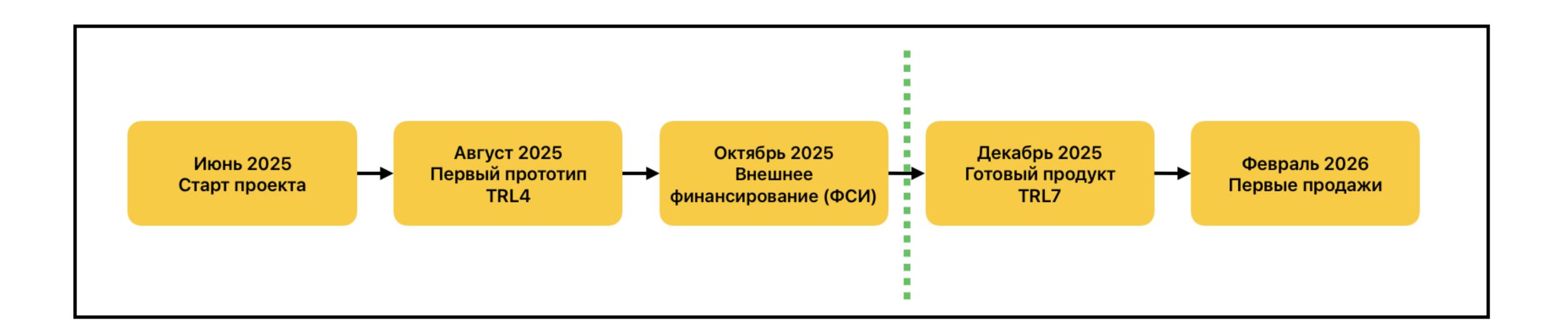
3Д Моделирование


CAD Модель

Рынок

Тренды

- ✔ Рост спроса на практическое обучение переход от теории к hands-on-форматам.
- ✔ Рынок услуг, связанных с архитектурным и промышленным макетированием растет на 15% в год.
- ✓ Цифровизация образования интеграция 3D-печатных макетов с AR/VR-платформами.


Конкуренты

Решение	Тип	Преимущества	Недостатки
Металлические макеты	Оригинальное демонтированное оборудование	Реалистичные материалы	Тяжёлые, дорогие, неразборные
Виртуальные макеты	Программный интерфэйс	Можно использовать VR	Без тактильного опыта
3D макеты других компаний	Напечатанные 3D макеты	Легкие, точные	Долгий срок производства, неразборные
3D макеты EdPrint 3D	Напечатанные 3D макеты	Лёгкие, точные, разборные, быстрое производство	

Существующие предприятия выпускают 3D Печатные макеты только по запросу, готового решения нет

Текущий трек проекта

- MVP
- Планируется вывод линейки продуктов.
- Средства фаундера 2 млн, Грант 1 млн

Предложение / Call to action

- Ищем партнёров для пилотного внедрения макетов в образовательные учреждения.
- Готовы адаптировать модели под специфику учебных программ.

Производство

• Материалы:

- Обычный пластик: PLA, PETG, ABS
- Инженерный пластик: ABS-GF/CF, PA-GF/CF, TOTAL-GF, POM, TERMAX, CARBEX
- Meталл: Inconel 718

• Оборудование:

- Более 15 ед. оборудования, 3д сканеры.
- САПР и ПО: Компас 3Д, Fusion 360, SolidWorks, Sharp 3D, Geomagic Design X, OrcaSlicer, Ultimaker Cura

Команда

Пережогин Егор
Основатель, руководитель
проекта.
7 лет в бизнесе, 3 года в 3Д печати

Галимулин Тимур
Инженер, специалист по 3Д печати.
5 лет работы в нефтегазовой отрасли.

Аутсорс 3Д Моделирование

Пережогин Егор. Tel: +7 (987) 474 64-56; Tg: @EgorPerezhogin

Email: egor.perezhogin@yandex.ru

